Enhanced Hydrogen Generation Properties of MgH2-Based Hydrides by Breaking the Magnesium Hydroxide Passivation Layer

نویسندگان

  • Liuzhang Ouyang
  • Minghong Huang
  • Ruoming Duan
  • Hui Wang
  • Lixian Sun
  • Craig M. Jensen
چکیده

Due to its relatively low cost, high hydrogen yield, and environmentally friendly hydrolysis byproducts, magnesium hydride (MgH2) appears to be an attractive candidate for hydrogen generation. However, the hydrolysis reaction of MgH2 is rapidly inhibited by the formation of a magnesium hydroxide passivation layer. To improve the hydrolysis properties of MgH2-based hydrides we investigated three different approaches: ball milling, synthesis of MgH2-based composites, and tuning of the solution composition. We demonstrate that the formation of a composite system, such as the MgH2/LaH3 composite, through ball milling and in situ synthesis, can improve the hydrolysis properties of MgH2 in pure water. Furthermore, the addition of Ni to the MgH2/LaH3 composite resulted in the synthesis of LaH3/MgH2/Ni composites. The LaH3/MgH2/Ni composites exhibited a higher hydrolysis rate—120 mL/(g·min) of H2 in the first 5 min—than the MgH2/LaH3 composite— 95 mL/(g·min)—without the formation of the magnesium hydroxide passivation layer. Moreover, the yield rate was controlled by manipulation of the particle size via ball milling. OPEN ACCESS Energies 2015, 8 4238 The hydrolysis of MgH2 was also improved by optimizing the solution. The MgH2 produced 1711.2 mL/g of H2 in 10 min at 298 K in the 27.1% ammonium chloride solution, and the hydrolytic conversion rate reached the value of 99.5%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen Desorption Properties of Nanocrystalline MgH2-10 wt.% ZrB2 Composite Prepared by Mechanical Alloying

Storage of hydrogen is one of the key challenges in developing hydrogen economy. Magnesium hydride (MgH2) is an attractive candidate for solid-state hydrogen storage for on-board applications. In this study, 10 wt.% ZrB2 was co-milled with magnesium hydride at different milling times to produce nanocrystalline composite powder. The effect of milling time and additive on the hydrogen desorption...

متن کامل

Charge Density Analysis in Magnesium Hydride

Magnesium is considered one of the most promising materials for reversible hydrogen storage, because it has high storage capacity. However, the high thermodynamic stability of magnesium hydride is unfavorable for dehydrogenation processes. Understanding the bonding nature of Mg and H is essential for improving its dehydrogenation performance. Therefore, the charge density distribution in MgH2 w...

متن کامل

Hydrogen Absorption/Desorption in Palladium and Metal Hydrides

Electrical generation from hydrogen, the element with higher energy density per unit mass, requires appropriated materials that can be used in its storage [1]. Palladium, with a high capacity to dissociate, absorb and desorb gaseous hydrogen, has been widely used for hydrogen storage [2], in separation membranes [3] and catalytic hydrogenation [4]. The present DFT calculations on clusters model...

متن کامل

Effect of Milling Time on Hydrogen Desorption Properties of Nanocrystalline MgH2

Nanocrystalline magnesium hydride powder was synthesized by mechanical milling of MgH2 in a planetary ball mill for various times. The effect of MgH2 structure, i.e. crystallite size, lattice strain, particle size and specific surface area on the hydrogen desorption properties was investigated. A single peak of hydrogen desorption was observed for as-received powder, exhibiting an average parti...

متن کامل

The Effect of Magnetic Field on Thermal-Reaction Kinetics of a Paramagnetic Metal Hydride Storage Bed

A safe and efficient method for storing hydrogen is solid state storage through a chemical reaction in metal hydrides. A good amount of research has been conducted on hydrogenation properties of metal hydrides and possible methods to improve them. Background research shows that heat transfer is one of the reaction rate controlling parameters in a metal hydride hydrogen storage system. Consideri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015